
Package: rsppfp (via r-universe)
September 6, 2024

Title R's Shortest Path Problem with Forbidden Subpaths

Version 1.0.4

Maintainer Melina Vidoni <melinavidoni@santafe-conicet.gov.ar>

Description An implementation of functionalities to transform directed
graphs that are bound to a set of known forbidden paths. There
are several transformations, following the rules provided by
Villeneuve and De-
saulniers (2005) <doi:10.1016/j.ejor.2004.01.032>, and Hsu et al. (2009) <doi:10.1007/978-3-
642-03095-6_60>. The resulting graph is generated
in a data-frame format. See rsppfp website for more
information, documentation an examples.

Depends R (>= 3.4.0)

Imports dplyr, foreach, doParallel, igraph, tidyr, stringr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, rmarkdown, testthat, covr, ggplot2

VignetteBuilder knitr

URL https://github.com/melvidoni/rsppfp

BugReports https://github.com/melvidoni/rsppfp/issues

Repository https://melvidoni.r-universe.dev

RemoteUrl https://github.com/melvidoni/rsppfp

RemoteRef HEAD

RemoteSha 2f1856e63f241854a400b239ed6a29a15055a3c2

1

https://doi.org/10.1016/j.ejor.2004.01.032
https://doi.org/10.1007/978-3-642-03095-6_60
https://doi.org/10.1007/978-3-642-03095-6_60
https://github.com/melvidoni/rsppfp
https://github.com/melvidoni/rsppfp/issues

2 direct_graph

Contents
direct_graph . 2
get_all_nodes . 3
get_shortest_path . 4
modify_graph_hsu . 5
modify_graph_vd . 7
parse_vpath . 8
rsppfp . 9

Index 10

direct_graph Undirected Graph Translator

Description

The SPPFP transformation functions only work with digraphs -i.e. directed graphs. Because in a
digraph arcs can only be traveled in one direction, from the origin node to the destination arc, if
undirected graphs are used as-is, the resultng G* will not be accurate. Therefore, this functions
translates an undirected graph to a digraph by duplicating each arc and swapping the duplicate’s
from and to nodes.

Usage

direct_graph(graph, cores = 1L)

Arguments

graph An undirected graph written as a data frame, in which each rows represent an
arc. The columns must be named from and to, and can be of any data type.
Each row can have additional attributes, and no cells can be NULL or NA.

cores This algorithm can be run using R’s parallel processing functions. This variable
represents the number of processing cores you want to assign for the transfor-
mation. The default value is one single core. It is suggested to not assign all of
your available cores to the function.

Value

A new graph, with the same columns and data types of the original graph. This new graph is twice
as big as the original, as new arcs are added to represent that each arc can be traveled in both
directions.

See Also

Other Parsers: get_all_nodes, parse_vpath

get_all_nodes 3

Examples

Obtain the graph from any way
graph <- data.frame(from = c("s", "s", "s", "u", "u", "w", "w", "x", "x", "v", "v", "y", "y"),

to = c("u", "w", "x", "w", "v", "v", "y", "w", "y", "y", "t", "t", "u"),
cost = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
stringsAsFactors = FALSE)

graph

Translate it
digraph <- direct_graph(graph)
digraph

get_all_nodes Parser for G* nodes.

Description

A original node N_i can appear on a transformed G* as different nodes. This is the result of the
creation of nodes in the transformation processes. Therefore, it is possible that the original node
N does not exists on G*, or that multiple N_i* exist. Hence, as all new nodes are generated using
a specific structure for the name -compiling all previous nodes names, split by pipe-, this function
allows searching for all the N_i* nodes that are equivalente to N_i. This can be used to find shortest
paths to all of them.

Usage

get_all_nodes(g, originalNode)

Arguments

g A graph in data frame format, translated using one of the available functions.

originalNode The name of the original node from G, that needs to be searched within G*. It
is preferable to use a character format, but this can also be of any simple type.
No lists or vectors are allowed.

Value

A new vector of character type, whose elements are all the N_i* equivalent to the original N node.
This also includes the original node.

See Also

Other Parsers: direct_graph, parse_vpath

4 get_shortest_path

Examples

Given a specific gStar graph:
gStar <- data.frame(from = c("u|v", "s|u|v", "s|u", "s", "s", "u", "w", "w", "x", "x", "v",

"v", "y", "y", "s", "s|u", "u", "u|v"),
to = c("t", "u|v|y", "w", "w", "x", "w", "v", "y", "w", "y", "y", "t",

"t", "u", "s|u", "s|u|v", "u|v", "u|v|y"),
weight = c(12L, 3L, 5L, 9L, 7L, 5L, 11L, 10L, 1L, 2L, 3L, 12L, 13L,

0L, 8L, 4L, 4L, 3L),
stringsAsFactors = FALSE)

gStar

Obtain all the nodes equivalent to N_i = "v"
get_all_nodes(gStar, "v")

get_shortest_path igraph Shortest Path

Description

A original node N_i can appear on a transformed gStar as different N_i* equivalent nodes. There-
fore, this becomes a limitation when searching for a shortest path inside gStar. As a result: all
N_i* need to be considered as possible destination nodes when looking for the shortest path. This
function is a wrapper for this behavior, providing a straightforward implementation using igraph
capabilities. However, it aims to provide guidance on how to build a similar algorithm for different
path-finding algorithms.

It is important to mention that new nodes are only considered as destination nodes, and they are not
search for origin nodes. This is because N* nodes can only be reached after traveling through gStar
nodes. For example, a node "f|e|r" is actually indicating that "r" has been reached after traveling
through the nodes "f" and "e".

Usage

get_shortest_path(g, origin, dest, weightColName = NULL)

Arguments

g A gStar digraph in data frame format, translated using one of the available func-
tions. The weight or cost attribute of each arc of the graph must be stored in a
specific column named weight.

origin The name of the starting node from G for the path. It must be written as it
appears in G, and it is preferable to use a character format, but this can also be
of any simple type. No lists or vectors are allowed.

dest The name of the destination node from G for the path. It must be written as it
appears in G, and it is preferable to use a character format, but this can also be
of any simple type. No lists or vectors are allowed.

modify_graph_hsu 5

weightColName The name of the weight column used in the dataframe. If the column does not
exist, a name _must_ be provided so that a new weight column is generated.

Value

The shortest path from origin node to dest node, calculated in G*, to include the forbidden paths.
It uses igraph’s functionalities.

Examples

Given a specific gStar graph:
gStar <- data.frame(from = c("u|v", "s|u|v", "s|u", "s", "s", "u", "w", "w", "x", "x",

"v", "v", "y", "y", "s", "s|u", "u", "u|v"),
to = c("t", "u|v|y", "w", "w", "x", "w", "v", "y", "w", "y", "y", "t",

"t", "u", "s|u", "s|u|v", "u|v", "u|v|y"),
weight = c(12L, 3L, 5L, 9L, 7L, 5L, 11L, 10L, 1L, 2L, 3L, 12L, 13L, 0L,

8L, 4L, 4L, 3L),
stringsAsFactors = FALSE)

gStar

Obtain the shortest path
get_shortest_path(gStar, "s", "v", "weight")

modify_graph_hsu Hsu et al. (2009) Algorithm

Description

It is an implementation of Hsu et al. algorithm to transform a digraph and a known set of forbidden
paths, into a new graph that does not allow any forbidden path as part of its solutions.

Usage

modify_graph_hsu(g, f, cores = 1L)

Arguments

g The digraph to be transformed, written as a data frame where each row repre-
sents a directed arc. The columns must be named from and to, and can be of
any data type. On each row no cells can be NULL or NA.

f The set of forbidden paths, written as a data frame. Each row represents a path
as a sequence of nodes. Each row may be of different size, filling the empty
cells with NA. All nodes involved must be part of g, and no forbidden path can
be of size 2. This is because the latter is thought as an arc that should not exist
in the first place.

6 modify_graph_hsu

cores This algorithm can be run using R’s parallel processing functions. This variable
represents the number of processing cores you want to assign for the transfor-
mation. The default value is one single core. It is suggested to not assign all of
your available cores to the function.

Details

This version of the algorithm produce smaller graphs, with less new nodes and arcs.

Value

A new graph, generated following Hsu’s backward construction, in which no path includes one of
the forbidden subpaths. The graph is returned in a data frame format, where each row represents a
directed arc, with or without additional attributes (if corresponds). However, regardless of the data
type of the original graph, nodes on the new graph are of type character. The new nodes names
are generated by incrementally concatenating the nodes on a forbidden path, but split by a pipe
character (|).

See Also

https://doi.org/10.1007/978-3-642-03095-6_60

Other Graph Transformation: modify_graph_vd

Examples

Obtain a graph and its forbidden subpaths
graph <- data.frame(from = c("c", "c", "u", "u", "t", "a", "a", "r", "e", "e", "e",

"p", "i", "i", "n", "o"),
to = c("u", "p", "e", "t", "a", "r", "i", "u", "r", "i", "p",

"n", "n", "o", "o", "m"),
stringsAsFactors = FALSE)

fpaths <- data.frame(X1 = c("u", "p", "a", "a"), X2 = c("t", "n", "i", "r"),
X3 = c("a", "o", "n", "u"), X4 = c("r", "m", "o", NA),
X5 = c("u", NA, NA, NA), stringsAsFactors = FALSE)

Show the input
graph
fpaths

Call the function and store the result
gStar <- modify_graph_hsu(graph, fpaths)
gStar

https://doi.org/10.1007/978-3-642-03095-6_60

modify_graph_vd 7

modify_graph_vd Villeneuve and Desaulniers (2005) Algorithm

Description

It is an implementation of Villeneuve and Desaulniers’ algorithm to transform a digraph and a
known set of forbidden paths, into a new graph that does not allow any forbidden path as part of
its solutions. This algorithm should only be used when there is certainty that no forbidden path is a
sub-path (or contains a sub-path) of another forbidden path.

Usage

modify_graph_vd(g, f, cores = 1L)

Arguments

g The digraph to be transformed, written as a data frame where each row repre-
sents a directed arc. The first two columns must be named from and to, and can
be of any data type. No cells can be NULL or NA.

f The set of forbidden paths, written as a data frame. Each row represents a path
as a sequence of nodes. Each row may be of different size, filling the empty
cells with NA. All nodes involved must be part of g, and no forbidden path can
be of size 2. This is because the latter is thought as an arc that should not exist in
the first place. Also, no forbidden path can be sub-path (or contain a sub-path)
of another forbidden path. The columns names are not relevant.

cores This algorithm can be run using R’s parallel processing functions. This variable
represents the number of processing cores you want to assign for the transfor-
mation. The default value is one single core. It is suggested to not assign all of
your available cores to the function.

Value

A new graph, generated following Villeneuve’s prodcedure, in which no path includes one of the
forbidden subpaths. The graph is returned in a data frame format, where each row represents a
directed arc. However, regardless of the data type of the original graph, nodes on the new graph are
of type character. The new nodes names are generated by incrementally concatenating the nodes
on a forbidden path, but split by a pipe character (|). The new graph includes all of the additional
attributes that the original graph had.

See Also

https://doi.org/10.1016/j.ejor.2004.01.032

Other Graph Transformation: modify_graph_hsu

https://doi.org/10.1016/j.ejor.2004.01.032

8 parse_vpath

Examples

Obtain a graph and its forbidden subpaths
graph <- data.frame(from = c("s", "s", "s", "u", "u", "w", "w", "x", "x", "v", "v",

"y", "y"),
to = c("u", "w", "x", "w", "v", "v", "y", "w", "y", "y", "t", "t", "u"),

cost = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
stringsAsFactors = FALSE)

fpaths <- data.frame(V1 = c("s", "u"), V2 = c("u", "v"), V3 = c("v", "y"), V4 = c("t", "u"),
stringsAsFactors = FALSE)

Show the values
graph
fpaths

Call the function and store the result
modify_graph_vd(graph, fpaths)

parse_vpath Parser for G* nodes paths.

Description

Translates a sequence of nodes from a G* graph, generated with any of the available transforma-
tions, to a sequence of nodes in terms of the original G.

Usage

parse_vpath(vpath)

Arguments

vpath A vector of character type, representing a path as a sequence of nodes. The
nodes are supposed to belong to an original graph G, but be written in terms of
G*.

Value

A new vector of character type, representing the same path as vpath but with the nodes names
translated to the original graph G’s names.

See Also

Other Parsers: direct_graph, get_all_nodes

rsppfp 9

Examples

Obtain the vpath from any way, an algorithm or random walk.
Call the parsing function
translated_vpath <- parse_vpath(c("s|u", "s|u|v", "u|v|y", "t"))

Print the result
translated_vpath

rsppfp Package: rsppfp

Description

Transformation algorithms to translate the SPPFP (Shortest Path Problem with Forbidden Paths) to
a traditional shortest-path problem that includes the forbidden paths.

Details

The SPPFP is a variant of the traditional shortest path problem, in which no solution can include
any path listed on a known set of forbidden paths. The current approach to solve this is to translate
the existing graph, and its set of forbidden paths, to a graph in which no path will include any
forbidden sequence. This package provides straightforward parallel processing capabilities, as well
as translation functions to use the algorithms on undirected graphs. It is highly compatible with
other network research packages, as it only uses native R data types.

Index

∗ Graph Transformation
modify_graph_hsu, 5
modify_graph_vd, 7

∗ Parsers
direct_graph, 2
get_all_nodes, 3
parse_vpath, 8

∗ igraph Integration
get_shortest_path, 4

direct_graph, 2, 3, 8

get_all_nodes, 2, 3, 8
get_shortest_path, 4

modify_graph_hsu, 5, 7
modify_graph_vd, 6, 7

parse_vpath, 2, 3, 8

rsppfp, 9
rsppfp-package (rsppfp), 9

10

	direct_graph
	get_all_nodes
	get_shortest_path
	modify_graph_hsu
	modify_graph_vd
	parse_vpath
	rsppfp
	Index

